Activation patterns and length changes in hindlimb muscles of the bullfrog Rana catesbeiana during jumping.

نویسندگان

  • J M Olson
  • R L Marsh
چکیده

We measured the electromyographic (EMG) activity of seven hindlimb muscles during jumping in the bullfrog Rana catesbeiana. The semimembranosus, gracilis major, gluteus magnus, adductor magnus, cruralis and plantaris longus were consistently active approximately 20-40 ms before any perceptible movement, as indicated by simultaneous video recordings. Activity ended before full extension of the hindlimb and take-off. Activity in the semitendinosus was variable among the jumps recorded. Simultaneous measurements of EMG activity and length changes (via sonomicrometry) in the semimembranosus (SM) and gluteus magnus (GM) muscles indicated that the performance characteristics of these two muscles differed. The SM muscle (a hip extensor) shortens and is activated in a manner consistent with its producing power during a significant fraction of the take-off phase. It shortened by a mean of 26.2% of the resting length during the propulsive phase of the two longest jumps for each frog. The delay between the onset of EMG activity and the beginning of shortening averaged 24 ms, which was brief compared with that found for the GM. The total strain and mean shortening velocity of the SM increased with jumping distance. Contrary to our initial expectations, the GM muscle does not shorten as one would expect of a muscle involved in powering the jump throughout take-off. This muscle has an extensor action at the knee, but also has a flexor action at the hip. A long delay existed between the onset of EMG activity and the beginning of shortening (46-116 ms among the individuals tested). Shortening during take-off by the GM (a mean of 16.7% for all jumps) was much less than by the SM, and in many jumps most of this shortening occurred late in the take-off period. Although the GM cannot contribute directly to power output early in take-off, it may contribute to powering the jump indirectly by transferring energy from the hip extensors to the knee joint. We conclude that muscles previously assumed (on the basis of anatomical criteria) by ourselves and others to be powering the jump may show considerable diversity of function. We hypothesize that elastic energy storage is used to help power jumping, and therefore suggest that muscles in series with major tendinous elements should be targeted for further study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors.

Previous studies have suggested that the motor system may simplify control by combining a small number of muscle synergies represented as activation profiles across a set of muscles. The role of sensory feedback in the activation and organization of synergies has remained an open question. Here, we assess to what extent the motor system relies on centrally organized synergies activated by spina...

متن کامل

Muscle performance during frog jumping: influence of elasticity on muscle operating lengths.

A fundamental feature of vertebrate muscle is that maximal force can be generated only over a limited range of lengths. It has been proposed that locomotor muscles operate over this range of lengths in order to maximize force production during movement. However, locomotor behaviours like jumping may require muscles to shorten substantially in order to generate the mechanical work necessary to p...

متن کامل

The diversity and evolution of locomotor muscle properties in anurans.

Anuran jumping is a model system for linking muscle physiology to organismal performance. However, anuran species display substantial diversity in their locomotion, with some species performing powerful leaps from riverbanks or tree branches, while other species move predominantly via swimming, short hops or even diagonal-sequence gaits. Furthermore, many anurans with similar locomotion and mor...

متن کامل

Muscle-spring dynamics in time-limited, elastic movements.

Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic ener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 201 Pt 19  شماره 

صفحات  -

تاریخ انتشار 1998